valohai.yaml Overview
Example valohai.yaml
- step:
name: preprocess-dataset
image: python:3.9
command:
- pip install numpy valohai-utils
- python ./preprocess_dataset.py
inputs:
- name: dataset
default: https://valohaidemo.blob.core.windows.net/mnist/mnist.npz
- step:
name: train-model
image: tensorflow/tensorflow:2.6.0
command:
- pip install valohai-utils
- python ./train_model.py {parameters}
parameters:
- name: epochs
default: 5
type: integer
- name: learning_rate
default: 0.001
type: float
inputs:
- name: dataset
default: https://valohaidemo.blob.core.windows.net/mnist/preprocessed_mnist.npz
- step:
name: batch-inference
image: tensorflow/tensorflow:2.6.0
command:
- pip install pillow valohai-utils
- python ./batch_inference.py
inputs:
- name: model
- name: images
default:
- https://valohaidemo.blob.core.windows.net/mnist/four-inverted.png
- https://valohaidemo.blob.core.windows.net/mnist/five-inverted.png
- https://valohaidemo.blob.core.windows.net/mnist/five-normal.jpg
- pipeline:
name: training-pipeline
nodes:
- name: preprocess
type: execution
step: preprocess-dataset
- name: train
type: execution
step: train-model
override:
inputs:
- name: dataset
- name: evaluate
type: execution
step: batch-inference
edges:
- [preprocess.output.preprocessed_mnist.npz, train.input.dataset]
- [train.output.model*, evaluate.input.model]Last updated
Was this helpful?
