TensorFlow/Keras
Quick Example
import tensorflow as tf
import valohai
class ValohaiMetricsCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
with valohai.metadata.logger() as logger:
logger.log("epoch", epoch + 1)
logger.log("accuracy", logs["accuracy"])
logger.log("loss", logs["loss"])
logger.log("val_accuracy", logs["val_accuracy"])
logger.log("val_loss", logs["val_loss"])
# Use the callback
model.fit(
train_dataset,
validation_data=val_dataset,
epochs=10,
callbacks=[ValohaiMetricsCallback()],
)Why Use Callbacks?
Complete Working Example
valohai.yaml Configuration
Logging Without valohai-utils
Logging Learning Rate
Combining Multiple Callbacks
Logging Custom Metrics
Using LambdaCallback (Shorter Syntax)
Logging Per-Batch Metrics (Advanced)
Best Practices
Always Convert to Python Types
Handle Missing Metrics
Use Descriptive Metric Names
Common Issues
Metrics Not Appearing
Validation Metrics Missing
Example Project
Next Steps
Last updated
Was this helpful?
