Configure Resources Per Pipeline Node
Why customize resources per node?
Resource configuration methods
1. Configure in valohai.yaml (recommended)
- step:
name: preprocess-dataset
image: python:3.9
environment: aws-eu-west-1-m5-4xlarge # 16 vCPUs, 64GB RAM, no GPU
command:
- pip install pandas numpy valohai-utils
- python preprocess.py
- step:
name: train-model
image: tensorflow/tensorflow:2.6.0-gpu
environment: aws-eu-west-1-p3-8xlarge # 4x V100 GPUs
command:
- python train.py {parameters}
- step:
name: evaluate-model
image: python:3.9
environment: aws-eu-west-1-t3-medium # 2 vCPUs, 4GB RAM, cost-efficient
command:
- python evaluate.py2. Override in pipeline definition
3. Web interface selection

Best practices
1. Profile before optimizing
2. Consider spot/preemptible instances
3. Document resource requirements
Cost optimization strategies
Right-size your resources
Example cost comparison
Troubleshooting
Node fails with SIGKILL (9) or "out of memory"
GPU not detected
Environment not found
Last updated
Was this helpful?
