Pipeline Parameters
When to use pipeline parameters
Configure in valohai.yaml
- step:
name: preprocess-dataset
image: python:3.9
command:
- pip install numpy valohai-utils
- python ./preprocess_dataset.py
parameters:
- name: exec_id
type: string
- name: filters
type: string
default: ["low-pass"]
inputs:
- name: dataset
default: https://valohaidemo.blob.core.windows.net/mnist/mnist.npz
- step:
name: train-model
image: tensorflow/tensorflow:2.6.0
command:
- pip install valohai-utils
- python ./train_model.py {parameters}
parameters:
- name: exec_id
type: string
- name: train_param
type: integer
default: 5
- pipeline:
name: shared-parameters-example
parameters:
- name: id
targets:
- preprocess.parameters.exec_id
- train.parameters.exec_id
- name: training_parameter
targets:
- train.parameters.train_param
default: 3
- name: filters
target: preprocess.parameters.filters
default: ["remove-outliers", "normalize"]
nodes:
- name: preprocess
step: preprocess-dataset
type: execution
- name: train
step: train-model
type: execution
- name: train_in_task
step: train-model
type: task
edges:
- [preprocess.output.preprocessed_mnist.npz, train.input.dataset]Key concepts
Access in your code
Command-line parsing
Python with valohai-utils
Multi-value parameters for tasks
Web interface behavior

Common patterns
Experiment tracking
Resource scaling
Next steps
Last updated
Was this helpful?
