Run parallel executions within a pipeline
When to use task nodes
How task nodes work
- pipeline:
name: Training Pipeline
nodes:
- name: preprocess
type: execution
step: Preprocess dataset (MNIST)
- name: train
type: task # This node runs multiple executions
step: Train model (MNIST)
override:
inputs:
- name: training-set-images
- name: training-set-labels
- name: test-set-images
- name: test-set-labels
- name: evaluate
type: execution
step: Batch inference (MNIST)
edges:
- [preprocess.output.*train-images*, train.input.training-set-images]
- [preprocess.output.*train-labels*, train.input.training-set-labels]
- [preprocess.output.*test-images*, train.input.test-set-images]
- [preprocess.output.*test-labels*, train.input.test-set-labels]
- [train.output.model*, evaluate.input.model]Handle task failures
Error handling options
Option
Behavior
Use when
Example: Robust hyperparameter search
Handle task outputs
Best practices for output naming
Create task nodes in the UI
Last updated
Was this helpful?
